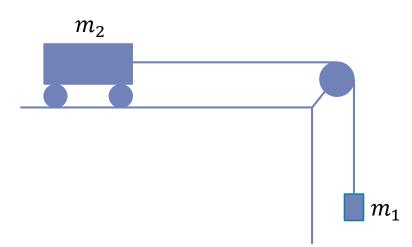

PROBLEMS

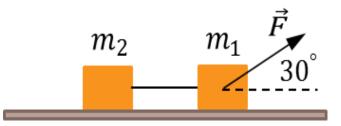
- 1. A car speeds up from 12m/s to 20m/s in 6,4s. If its mass is 1200kg, what force must its engine provide?
- 2. A train with a mass of 500t is uniformly retarded by applying its brake. Its velocity drops from 60 km/h to 20 km/h in 25 seconds. Find the braking force.
- 3. An automobile of mass 2000kg moving at 30m/s is braked suddenly with a constant breaking force of 10000N. How far does the car travel before stopping?
- 4. An initially stationary electron ($m_e = 9,1 \cdot 10^{-31} kg$) undergoes a constant acceleration through 2cm reaching $4 \cdot 10^6 m/s$. What is the magnitude of the force accelerating the electron?
- 5.A force produces an acceleration of $10m/s^2$ in a body of mass m_1 , and the same force produces an acceleration of $2m/s^2$ in another body of mass m_2 . If the same force is applied to $m_1 + m_2$ then the acceleration will be?
- 6. Graph shows the variation of the velocity of a moving object (m=1200kg) with time. Draw the graph showing the variation of the force with time.

- 7. A crane is used to hoist a load of mass 500kg. The load is suspended by a cable. The load is lifted upward with constant acceleration $0.5m/s^2$. Find the tension force in the cable.
- 8. Two forces $F_1 = 3N$ and $F_2 = 4N$ act a 0,5 kg object. Find the accelleration of the object? Friction is negligible.
- 9. Three connected blocks are pulled to the right an a horizontal frictionless table by a force of magnitude F=12N. If $m_1 = 1kg$, $m_2 = 2kg$, $m_3 = 3kg$ calculate: a) the magnitude of the systems accelaeration b) the tension force T_1 c) the tension force T_2

10. Picture shows two blocks connected by a cord (of negligible mass) that pass over a frictionless pulley (also of negligible mass). One block has mass $m_1 = 10g$, other has mass $m_2 = 30g$. Calculate: a) the magnitude of the blocks acceleration b) the tension force in the cord



11. In picture, cart of mass $m_2 = 100g$, and block of mass $m_1 = 20g$, are connected with cord. When the system is released from rest, calculate:


a) the magnitude of the system acceleration

b) the tension force in the cord

Negligible friction an its axle and negligible the mass of cord.

- 12. Two connected blocks are pulled to the right an a horizontal frictionless table by a force of magnitude F=1,73N (picture). If $m_1=1kg$, $m_2=2kg$, calculate:
 - a) the magnitude of the systems accelaeration
 - b) the tension force

13. A bar is moving downward along 2.82m long frictionless incline plane with a slope 45°. If the bar starts from rest what will be the bar's velocity when it reaches the bottom of plane?